

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Galileo-only positioning for the present Galileo constellation

Tomasz HADAŚ^(1,2), <u>Kamil KAŹMIERSKI⁽²⁾</u>, Krzysztof SOŚNICA⁽²⁾

- 1) University of Stuttgart, Institute of Navigation
- 2) Wroclaw University of Environmental and Life Sciences

The EUREF Analysis Centres Workshop October 16-17, 2019, Warsaw, Poland

Motivation: Galileo status

22 + 2 + 2 Galileo satellites:

- February 11, 2019: E11, E13, **E33** E15 and announced healthy
- **E20 E22** and are unserviceable (singlefrequency; management)
- E14 and E18 (first FOC) in elliptical orbits (missed their target)
 - dev. of the semimajor axis =1620 km
- 24 •• broadcast ephemeris
- 24 •• IGS MGEX orb+clk

Products:

- 22 (-4) IGS RTS orb+clk
- Galileo constellation status as of January 1, 2019. Satellites are marked with PRN numbers, grey letters and numbers allow for identifying a satellite slot

Motivation: Galileo-only positioning

Literature:

- GPS only @ BRDC / FIN / RT products
- GNSS (=GPS+GLO/GAL/BDS) @ BRDC / FIN / RT products
- GLO/BDS only, incomplete GAL
- **Galileo only** @ BRDC / FIN / RT products

Galileo > other GNSS:

- multiple signals and frequencies
- 0.25 m tracking range error of E1 (<0.10 m for E5 AltBOC)
- SISRE=0.15 m (2-3x better than GPS) ^[1]

^[1] Steigenberger and Montenbruck, 2017, Multi-GNSS SISRE Monitoring – Methodology and Results, German Space Operations Center (GSOC)

Global availability (elev.≥5°, Jan 1-7, 2019)

- ≥5 Galileo satellites available 100% (global PPP / RTK / ...)
- ca. 2 more GPS satellites than Galileo satellites

Global PDOP (elev.≥5°, Jan 1-7, 2019)

- GPS PDOP <2.0 (except poles, with PDOP up to 2.8)
- Galileo PDOP from 2.1 to 3.0 (poles up to 3.8)

Availability and PDOP (Galileo vs. GPS)

- GPS>Galileo (#SV & PDOP); GPS better for urban canyons
- maximum 14 Galileo satellites (Antarctica)

Galileo-only positioning – methodology (1)

Undifferenced uncombined functional model ^[2] in GNSS-WARP:

$$C_i^s - \rho_0^s + c\delta t^s + b_{C,i}^s = e_r^s \cdot \delta X_r + c\delta t_r + m^s T_Z + \mu_i I^s$$

 $L_i^s - \rho_0^s + c\delta t^s + b_{L,i}^s = e_r^s \cdot \delta X_r + c\delta t_r + m^s T_z - \mu_i I^s + \lambda_i N_i^s$

$$e_r^s = \begin{bmatrix} \frac{X_r - X^s}{\rho_0^s} & \frac{Y_r - Y^s}{\rho_0^s} & \frac{Z_r - Z^s}{\rho_0^s} \end{bmatrix} \quad \delta X_r = \begin{bmatrix} \delta X_r & \delta Y_r & \delta Z_r \end{bmatrix}^T$$
$$\mu_i = f_1^2 / f_i^2 \qquad \rho_0^s = \sqrt{\left(X^s - X_{r,0}\right)^2 + \left(Y^s - Y_{r,0}\right)^2 + \left(Z^s - Z_{r,0}\right)^2}$$

In this study:

- dual frequency data (*i*=1,2)
- PPP uses C & L observations
- SPP uses C observations only

- no constraints on *I*
- float ambiguities

^[1] Schönemann E (2014) Analysis of GNSS raw observations in PPP solutions. Dissertation, Technische Universität Darmstadt | WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Galileo-only positioning – methodology (2)

Data:

- January 1 to 7, 2019
- 20 IGS stations
- RINEX v3.03
- E1/E5a + I/NAV
- FIN: MGEX CODE
- RTS: CLK93

Location of test stations

Processing variants:

produce set to the resist there allowed to			~							ĺ.
	SPPs +NAV	SPPs +RTS	PPPs +NAV	PPPs +RTS	PPPs+ MGEX	SPPk +NAV	SPPk +RTS	PPPk +NAV	PPPk +RTS	PPPk+ MGEX
Coordinates mode	Static			Kinematic						
Observables	C	2		C+L		(C		C+L	
Orbits and clocks	BRCD	DTC	BRCD	DTC	MGEX	BRCD	DTC	BRCD	DTC	MGEX
Satellite biases	0	RIS	0	RIS	CODE	0	RIS	0	RIS	CODE
Troposphere delay	fixed		T _Z estimated		fixed		T _Z estimated			

Examplary results for WROC station, January 1, 2019

Static positioning results (1)

PPP (E1C/E5C + E1W/E5W) accuracy:

a) **+NAV**

- RMS Hz = 0.07 m
- RMS V = 0.10 m

b) **+RTS**

- RMS Hz = 0.05 m
- RMS V = 0.06 m

c) +MGEX

- RMS Hz = 0.04 m
- RMS V = 0.05 m

Differences between coordinates obtained from Galileo-only pseudorange and carrier-phase daily static solutions and IGS weekly combined solution

Static positioning results (2)

<u>SPP</u> (E1C/E5C) accuracy (RMS):

a) **+NAV**

- RMS Hz = 0.14 m
- RMS V = 0.43 m
 - +0.25 m avg. bias (tropo)

b) +RTS: improves:

- Hz by 37%
- V by 16%

Differences between coordinates obtained from Galileo-only daily static solutions and IGS weekly combined solution

Galileo vs GPS (static mode)

RMSE between estimated coordinates and IGS weekly combined solution for GPSonly and Galileo-only dual-frequency static positioning

Processing	Horizoi	ntal [m]	Vertical [m]			
variant	GPS	Galileo	GPS	Galileo		
SPPs+NAV	0.279	0.141	0.701	0.433		
SPPs+RTS	0.115	0.089	0.418	0.365		
PPPs+NAV	0.197	0.067	0.188	0.098		
PPPs+RTS	0.031	0.049	0.044	0.060		
PPPs+MGEX	0.012	0.039	0.013	0.045		

 precise Galileo static positioning still not as good as with GPS (less accurate orbit and clock products, less satellites)

- outsdanding accuracy of Galileo static SPP/PPP+NAV
- code based static positioning benefits from RTS (even more for GPS)

Kinematic positioning results (1)

<u>SPP</u> (E1C/E5C) accuracy:

a) **+NAV**

- RMS Hz = 1.0 m
- RMS V = 1.7 m
 - +0.3 m avg. bias (tropo)

b) **+RTS**:

improves:

- Hz by 10%
- V by 10%

Differences between coordinates obtained from Galileo-only pseudorange kinematic solutions and IGS weekly combined solution

Kinematic positioning results (2)

<u>PPP</u> (E1C/E5C + E1W/E5W) accuracy:

a) **+NAV**

- RMS Hz = 0.27 m
- RMS V = 0.34 m

b) **+RTS**

- RMS Hz = 0.16 m
- RMS V = 0.21 m

c) +MGEX

- RMS Hz = 0.16 m
- RMS V = 0.20 m

Differences between coordinates obtained from Galileo-only pseudorange and carrier-phase kinematic solutions and IGS weekly combined solution | WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Galileo vs GPS (kinematic mode)

RMSE between estimated coordinates and IGS weekly combined solution for GPSonly and Galileo-only dual-frequency kinematic positioning

Processing	Horizoi	ntal [m]	Vertical [m]			
variant	GPS	Galileo	GPS	Galileo		
SPPs+NAV	1.269	1.045	2.211	1.702		
SPPs+RTS	0.921	0.938	1.557	1.536		
PPPs+NAV	0.313	0.267	0.352	0.337		
PPPs+RTS	0.080	0.164	0.103	0.210		
PPPs+MGEX	0.160	0.165	0.178	0.205		

- code based kinematic positioning benefits from RTS (but not that much as static)
- kinematic Galileo SPP/PPP+NAV better than GPS (ca. 10%)
- Galileo kinematic RT-PPP 2x worse than GPS

Conclusions

Development of space segment and IGS:

Galileo-only absolute positioning is available!

- Broadcast ephemeris allow for accurate SPP/PPP.
- SPP (GPS and Galileo) benefits from RTS.

 Further improvement of the quality of final and real-time products for Galileo is required;

Galileo should outperform GPS!

Galileo-only positioning for the present Galileo constellation

WROCŁAW UNIVERSITY OF ENVIRONMENTAL AND LIFE SCIENCES

Thank you for your attention!

Hadas T., Kazmierski K. & Sośnica K. *Performance of Galileo-only dual-frequency absolute positioning using the fully serviceable Galileo constellation* GPS Solut (2019) 23: 108. https://doi.org/10.1007/s10291-019-0900-9

Presenting author: **Kamil Kaźmierski** Wroclaw University of Environmental and Life Sciences, <u>kamil.kazmierski@upwr.edu.pl</u>

The EUREF Analysis Centres Workshop October 16-17, 2019, Warsaw, Poland