

The EUREF Analysis Centres Workshop

Different methodologies in EPN Densification

J. Zurutuza

ARA OC and DAC UPA OC, DAC and LAC

Introduction:

- The EPN Densification Project consists of a very dense net of permanent GNSS stations that span throughout all Europe.
- The combined solution is computed regularly and it is based on the combination of the different SINEX files that a number of European Institutions (NMAs, Universities, Institutes,...) provide.
- This combination will be referred to as **week-wise**.

However, a different strategy, we will call AC-wise, has been tested:

- There is a lack of tests on the combination of multiyear dense regional networks that span for several years, so this case study goes in depth in this sort of (P+V) combinations applied to the EPN D.
- The results of both approaches should be the same, at the sigma level.
- I will show the results we get from this TWO different approaches:
 - Week-wise stacking: after the stacking of the weekly files each AC provides, we stack these combined (only P) weekly normal equations.
 - AC-wise stacking: stack all the SINEX files for each AC and then combine all these multiyear solutions (P+V).

The week-wise combination has some

PROS:

- The NEQ files are stacked and the weekly combination of all the contributions provides the QC of the individual solutions site by site, AC by AC.
- If no logsheet is available, we can compare the equipment in the SINEX files of the different providers. This will help to remove stations with inconsistent antennas/eccentricities.
- We have full control of all the residuals, threshold values,... We can decide when a discontinuity should be introduced.
- Eventually, the alignment of the reference stations (P+V) to the published values will give the final assessment of the quality of the results (e.g. Helmert transformation).

CONS:

- If reprocessed or new solutions are received, we must start from scratch the whole analysis.
- Very slow procedure: not just the final combination, but the definition of the discontinuities, outlier detection,...
- What if any trustworthy agency provides a multiyear SINEX file (P+V), instead of daily/weekly (only P) solutions?

Available data and editing criteria

We will use 7 different SINEX files that are combined together with the EPN weekly solutions (as foreseen in the Densification Guidelines). This makes 8 NEQs (P+V) to be combined.

All the provided SINEX files are comparable since they were created using standard Guidelines (EUREF or EPOS).

Metadata is rigorously checked with logsheets, when available: inconsistent antennas are dismissed; or eccentricities, if different, are corrected.

Week-wise:

- We use the available SINEX files (weekly/daily). Residual exclusion criteria: 10 mm/20 mm, iteratively.
- Combine them in a weekly solution (if daily).
- Stack the weekly files to get the multiyear solution.
- Different antennas/ecc. discarded.

AC-wise:

- SAME SINEX files.
- We combine all the SINEX files from each AC. This we call AC-wise solution: 1 multiyear SINEX file for each AC.
- We combine all the AC-wise SINEX files.
- Residual exclusion criteria: 15 mm/30 mm.

Because the analysis extends until GPSW 2060, I have used my own discontinuity file, created using the C2055 discontinuity/CRD/VEL files (EPN stations) and after the visual inspection of all the time series.

TBD: IGb08-IGS14 position corrections (switch from igs08.atx to igs14.atx).

Test Network (velocities estimated only if they span +3 years):

Test Network: AC-wise, Helmert parameters (combined vs individual solutions).

	RMS (m)	TX (m)	TY (m)	TZ (m)	RX (")	RY ('')	RZ ('')	Esc. (ppm)]
EUR	0.00144	0.0002	-0.001	-0.0002	0	0	0	-0.00002	
MAO	0.00304	-0.0083	0.0113	-0.0091	-0.0003	0	0.0003	0.00131	
ARA	0.00374	0.0079	0.0028	-0.0181	-0.0001	0.0006	-0.0001	0.00059	
CAT	0.00145	0.0048	0.0029	-0.0095	0	0.0004	0	0.00025	
IBE	0.00373	0.0033	-0.0032	0.0003	0.0001	0.0001	-0.0001	-0.00035	
RGP	0.00266	0.005	0.0079	0.0096	-0.0001	-0.0001	0.0002	-0.00165]
UPA	0.00282	-0.0026	0.0161	0.0032	-0.0003	-0.0001	0.0004	0.00022	
RDN	0.00236	-0.0019	-0.024	0.0138	0.0006	-0.0003	-0.0006	-0.00016]

EUR: all parameters very close to 0. This shows the agreement of the combined solution with EPN.

The EUREF Analysis Centres Workshop October 16–17, 2019, Warsaw, Poland

euraf

Test Network: Positions and velocities (Weekly vs AC-wise, A class)

The direct comparison of all the A CLASS coordinates, release C2055 (differences at epoch 2010.0) gives the following results:

Clas	s A DIFFERENCES IN L	OCAL	. SYSTEM	(NORTH,	EAST, UP),	AT EPOCH 20	010.0
			COORD:	INATE DIF	FERENCES IN	MILLIMETER	RS
	RMS / COMPONENT			0.02	0.02	0.09	
	MEAN	Ι		-0.00	-0.00	0.00	
	MIN	Ι		-0.23	-0.24	-0.56	
Ι	MAX	Ι		0.16	0.16	0.94	

For the coordinates, the maximum differences in absolute value are below 0.25 mm (N, E) and 1 mm (Up)

	Velocity differences [mm/y]							
	X Y Z Latitude Longitude H							
Min.	-0.05	-0.04	-0.08	-0.06	-0.03	-0.10		
Max.	0.20	0.04	0.20	0.03	0.09	0.28		
Mean	0.00	0.00	0.00	0.00	0.00	0.00		
STD.	0.01	0.00	0.01	0.01	0.01	0.02		

Respect the velocities, the differences are below 0.10 mm/year for the N and E velocities and below 0.30 mm/year for the Up component.

Test Network: (AC-wise vs C2055 published values)

The direct comparison of all the A CLASS coordinates, release C2055 (differences at epoch 2010.0) gives the following results:

Sites with differences > **10 mm (any component)** have been excluded: 26 rejected out of 674 (3.86%). This implies the AC-wise agrees with the C2055 release better then than 10 mm in any component at least at the 95% confident level (actually at the 96.14%).

	Velocity differences [mm/y]							
	X Y Z Latitude Longitude							
Min.	-1.50	-0.50	-1.79	-0.47	-0.49	-2.32		
Max.	1.68	0.55	1.47	0.56	0.71	2.23		
Mean	-0.22	0.07	-0.31	-0.07	0.10	-0.36		
RMS	0.28	0.12	0.30	0.12	0.13	0.39		

Respect the velocities, the differences are below 0.10 mm/year for the N and E velocities and below 0.40 mm/year for the Up component.

Test Network: Positions and velocities (Weekly vs AC-wise)

The direct comparison of all the coordinates, (differences at epoch 2010.0) gives the following results:

31 out of 2628 (SN included) exceed 10 mm in any component. This implies that the 98.82% of the differences are abs(10 mm).

<u>Respect the velocities</u>, almost all the AC-wise vs Week-wise are below 0.5 mm/year. However, we find some large differences due to the differences in the solutions submitted by the different ACs. These deserve to be individually analyzed.

The differences between AC-wise and week-wise are (all NEU components, 1 vel/site):

eursf

Test Network: EXTERNAL VALIDATION (http://pnac.swisstopo.admin.ch/divers/dens_vel/)

In order to verify the AC-wise results, we now show the differences we get wrt other EPN Densification solutions.

Cross validations in mm/y

(Sortable table)

50L1	50L2	NUM 🔺	MEAN_N	SDEV_N	MEAN_E	SDEV_E	MEAN_U	SDEV_U	
epndmy	epndmy	1539	0.00	0.00	0.00	0.00	0.00	0.00	
epndmy	epnd14	1013	0.14	0.34	-0.04	0.31	0.30	0.80	
epndmy	cgn14	743	-0.02	0.30	0.01	0.32	-0.16	0.79	
epndmy	gsrm14	663	0.09	0.46	-0.16	0.49	0.00	0.00	
epndmy	it08	449	0.20	0.66	-0.05	0.47	-0.44	1.13	
epndmy	rgp08	324	0.33	0.33	-0.17	0.42	0.36	0.97	
epndmy	basc08	249	0.13	0.35	-0.19	0.37	0.53	0.68	
epndmy	esp08	242	0.41	0.46	0.09	0.40	-0.19	0.96	
epndmy	epn14	231	0.06	0.14	-0.09	0.14	0.36	0.45	
epndmy	alp08	228	-0.05	0.38	-0.34	0.44	-0.16	0.92	
epndmy	walp08	142	-0.09	0.32	-0.40	0.40	-0.11	0.81	
epndmy	cat08	142	0.09	0.16	-0.07	0.15	0.36	0.57	
epndmy	ch08	131	-0.01	0.18	-0.03	0.20	0.12	0.61	
epndmy	ch16	129	0.05	0.18	-0.17	0.20	0.16	0.61	
epndmy	alps17	108	0.15	0.27	-0.01	0.34	0.15	0.71	
epndmy	itrf14	92	0.11	0.24	-0.04	0.41	0.49	0.48	
epndmy	igs08	76	-0.00	0.25	0.00	0.36	0.24	0.66	
epndmy	gut14x	55	0.08	0.14	-0.05	0.15	0.47	0.43	
epndmy	noqu08	44	0.00	0.24	-0.22	0.29	-0.40	0.63	
epndmy	nkg03	37	-0.24	0.38	-0.14	0.16	-0.41	0.38	
epndmy	gr08	28	-0.39	0.87	-0.62	0.67	-0.34	0.89	
epndmy	gurn08	23	-0.05	0.31	-0.29	0.30	0.00	0.00	
epndmy	gref08	19	-0.02	0.27	-0.19	0.22	-0.37	0.61	
epndmy	gurn08d	17	0.10	0.23	-0.12	0.36	-0.96	0.81	
epndmy	ch081	10	0.00	0.00	0.00	0.00	-0.51	0.58	
epndmy	turk14	5	0.26	0.30	-0.07	0.37	-0.45	0.23	
epndmy	cgn08	2	-0.04	0.06	0.17	0.44	0.15	0.57	
epndmy	svn14	0	nan	nan	nan	nan	nan	nan	
epndmy	hepos	0	nan	nan	nan	nan	nan	nan	
MEAN			0.05	0.30	-0.12	0.32	-0.03	0.63	
SDEV			0.16	0.18	0.16	0.14	0.38	0.27	

The EUREF Analysis Centres Workshop

40°

60°

40°

40°

ETRF2000 Velocities A sites, 3.0 mm/yr Other sites, 3.0 mm/yr

-20°

0°

20°

Conclusions:

- The results show that it is possible to use the AC-wise approach.
- The AC-wise and week-wise solutions agree at the mm-level (P) and at the 0.30 mm/year level (V) in the CLASS A stations.
- If we compare all the stations, AC-wise and week-wise, the agreement, at the 95% level of confidence, is 10 mm in any component (P) and 0.25 mm/year (V).
- AC-wise allows to use new solutions in a stragihtforward way.
- No approach (AC/week-wise) should be dismissed: they both should be computed regularly and used as an internal QC of the solutions.
- All the results, metadata validation,... are available at: <u>http://147.162.183.197/EPNDMY/</u>

Some remarks after this analysis:

- All Station Managers should maintain the IGS style log-sheets. This should be mandatory for all stations included (or to be included) in the analysis.
 MOREOVER, this is a requisite in the guidelines for the DENSIFICATION stations.
- All ACs should agree the discontinuities and the SN and report to the EPN.
- Repeated 4 char names should not be admitted, no matter whether the stations are in different countries.
- This eases working at the SINEX level! BSW-users use 4char (and even 2!).
- EPOS GNSS data gateway uses 4char as well: <u>http://gnssdata-epos.oca.eu/#/metadata/marker=PASA</u>
- WEEKLY files should always be provided, rather than daily. This way we avoid any manipulation of the original data: stacking daily files.

Thank you for your attention