EPN Analysis Centres Coordinator Report

T. Liwosz¹, A. Araszkiewicz²

¹Warsaw University of Technology, Poland ²Military University of Technology, Poland

EUREF Analysis Centres Workshop

Warsaw, Poland, October 16-17, 2019

Qutline

The EPN Analysis Centres Coordinator (ACC) combines and analyses GNSS coordinate solutions provided by 16 EPN Analysis Centres (AC).

The presentation focuses on:

- Latest developments relevant for EPN GNSS data analysis
- Recent activities of the ACC:
 - Combination and analysis of AC solutions including Galileo observations
 - Preliminary tests of analyzing the impact of adding global sites on EPN daily coordinate solutions

EPN Analysis Centres characteristics

AC	AC Description	Software	So	lutio	ns^1	# sites
ASI	Centro di Geodesia Spaziale, Italy	GIPSY 6.2	F	R	U	72
BEK	Bavarian Academy of Sciences & Humanities, Germany	Bernese 5.2	F	R	_	104
BEV	Federal Office of Metrology and Surveing, Austria	Bernese 5.2	F	_	_	118
BKG	Bundesamt fuer Kartographie und Geodaesie, Germany	Bernese 5.2	F	R	U	124
COE	Center for Orbit Determination in Europe, Switzerland	Bernese 5.3	F	_	_	42
IGE	Instituto Geografico Nacional, Spain	Bernese 5.2	F	R	_	91
IGN	Institut Geographique National, France	Bernese 5.2	F	R	_	63
LPT	Federal Office of Topography swisstopo, Switzerland	Bernese 5.3	F	R	U	61
MUT	Military University of Technology, Poland	GAMIT/GLOBK	F	R	_	147
NKG	Nordic Geodetic Commision, Sweden	Bernese 5.2	F	_	_	98
RGA	Republic Geodetic Authority, Serbia	Bernese 5.2	F	_	_	55
ROB	Royal Observatory of Belgium, Belgium	Bernese 5.2	F	R	_	102
SGO	Lechner Knowledge Center, Hungary	Bernese 5.2	F	R	_	42
SUT	Slovak University of Technology, Slovakia	Bernese 5.2	F	_	_	59
UPA	University of Padova, Italy	Bernese 5.2	F	R	_	69
WUT	Warsaw University of Technology, Poland	Bernese 5.2	F	R	-	133

¹ Solutions: F – Final, R – Rapid, U – Ultra-rapid

Inclusion of new stations to EPN

Presently EPN consists of 342 stations. Since the last workshop:

- 28 new stations added,
- 7 stations removed,
- 6 stations proposed.

Distribution of stations wrt. the number of processing ACs:

#ACs	#sites	% of sites
3	71	20.8
4	207	60.5
5	61	17.8
6	3	0.9

AC	#new	#removed	#sites
ASI	20	1	72
BEK	8	1	104
BEV	17	0	118
BKG	7	0	124
COE	0	1	42
IGE	6	1	91
IGN	0	1	63
LPT	1	0	61
MUT	4	1	147
NKG	11	1	98
RGA	0	1	55
ROB	5	1	102
SGO	0	0	42
SUT	0	0	59
UPA	12	0	69
WUT	17	3	133

Proposed stations to EPN

Presently there are 6 proposed stations to EPN

Antenna type	City	ACs	Ready
DGOROOMNE	Podgorica	ASI, BEV	
FFMJOODEU	Frankfurt	BKG	Yes
MAT100ITA	Matera	ASI, BEV, BKG, LPT	
TIT200DEU	Titz	BKG	Yes
VAINOOLVA	Vainode	BEV, BKG, NKG	
YLDZOOTUR	Istanbul	ASI, BKG, OLG, SUT	

- Two stations are ready to be included: FFMJ00DEU, TIT200DEU.
- At least 2 ACs are still needed to process these stations.

New ANTEX file at EPN CB

- Recently, new individual antenna calibrations were provided to EPN for already used antennas,
- EPN CB prepared a new ANTEX file that allows for multiple individual calibrations for the same antennas (presently for 8 antennas)
 - important for backward compatibility, reprocessing

Antenna type	Serial number	# calibs	Installed at
LEIAR25.R3 LEIT	09050002	2	FFMJOODEU, WARNOODEU
LEIAR25.R4 LEIT	10211013	2	HOFJOODEU, AUBGOODEU
LEIAR25.R4 LEIT	10211018	2	LEIJOODEU, HOFJOODEU
LEIAR25.R4 LEIT	725058	2	RANTOODEU, DILLOODEU
LEIAR25.R4 LEIT	725266	2	DILLOODEU, GELLOODEU
LEIAR25.R4 LEIT	725267	2	BAUTOODEU, HOE200DEU
LEIAR25.R4 LEIT	725552	2	AUBGOODEU, RANTOODEU
LEIAR25.R4 LEIT	725559	2	WARNOODEU, HELGOODEU

New ANTEX file at EPN CB – example

An example for antenna LEIAR25.R4 LEIT, SN: 725552, installed at RANT00DEU and AUBG00DEU.

```
LEIAR25.R4 LEIT725552
                                                       TYPE / SERIAL NO
ROBOT
                  Geo++ GmbH
                                             2013-01-11METH / BY / # / DATE
    5.0
                                                       DAZT
    0.0 90.0 5.0
                                                       ZEN1 / ZEN2 / DZEN
    4
                                                       # OF FREQUENCIES
              09 10 00 0.0000000
 2014
      05
                                                      VALID FROM
 2018
        06
              05
                   10 00 59.9999999
                                                      VALID UNTIL
EPNC RANTOODEU
                                                       SINEX CODE
```

```
LEIAR25.R4 LEIT725552 TYPE / SERIAL NO
CHAMBER IGG, Univ. Bonn 1 2018-08-23METH / BY / # / DATE
5.0 DAZI
0.0 90.0 5.0 ZEN1 / ZEN2 / DZEN
21 # OF FREQUENCIES
2018 11 27 10 00 0.0000000 VALID FROM
EPNC_AUBGOODEU SINEX CODE
```

New ANTEX file in Bernese GNSS Software

- To use the new ANTEX file in Bernese GNSS Software, the software has to be updated (program ATX2PCV.f90, new routine ANTCHK.f90)
 - improvement B_96 (26-Feb-2019)
- Also, a new station information file (STA-file) has to be used with the new ANTEX file:

STATION NAME		FROM			TO			 ANTENNA TYPE		ANTENNA SERIAL NBR	ANT #	
******	 YYYY MM	DD HH	MM SS	YYYY MM	DD HH	MM	SS	 ******	****	******	*****	
AUBG 10913M001	 2018 11	27 10	00 00	2099 12	31 00	00	00	 LEIAR25.R4	LEIT	725552	25553	
RANT 10914M001	 2014 05	09 10	00 00	2016 07	10 12	00	00	 LEIAR25.R4	LEIT	725552	25552	
RANT 10914M001	 2016 07	10 12	00 00	2017 06	02 08	30	00	 LEIAR25.R4	LEIT	725552	25552	
RANT 10914M001	 2017 06	02 08	30 00	2018 06	05 10	00	00	 LEIAR25.R4	LEIT	725552	25552	

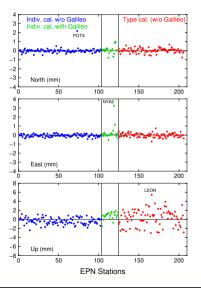
■ The necessary STA-file also has been prepared by the EPN CB.

New ANTEX file at EPN CB

The new ANTEX and STA files have been prepared by the EPN CB and will be mantained in parallel (for a limited time) with the presently used files. (For how long the old files should be maintained?)

```
ftp://ftp.epncb.oma.be/pub/station/general/epnc_14_recalib.atx
ftp://ftp.epncb.oma.be/pub/station/general/epn_14_WWWW_recalib.atx
ftp://ftp.epncb.oma.be/pub/station/general/EUREF_recalib.STA

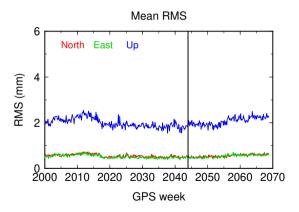
ftp://ftp.epncb.oma.be/pub/station/general/epnc_14.atx
ftp://ftp.epncb.oma.be/pub/station/general/epn_14_WWWW.atx
ftp://ftp.epncb.oma.be/pub/station/general/EUREF.STA
```


Liwosz et al.

Galileo in operational solutions since GPS week 2044

AC	Software	Test phase (weeks)	GNSS ¹	Remark
ASI	Gipsy Oasis II 6.2		G	
BEK	Bernese 5.2	1975-2043	GRE	Galileo
BEV	Bernese 5.2		GRE	Galileo
BKG	Bernese 5.2	1965-2043	GRE	Galileo
COE	Bernese 5.3		GR	
IGE	Bernese 5.2	1975-2043	GRE	Galileo
IGN	Bernese 5.2		GR	
LPT	Bernese 5.3	1975-2043	GREC	Galileo
MUT	GAMIT/GLOBK		GE	Galileo
NKG	Bernese 5.2	2023-2043	GRE	Galileo
RGA	Bernese 5.2		GR	
ROB	Bernese 5.2	1960-2043	GRE	Galileo
SGO	Bernese 5.2		GR	
SUT	Bernese 5.2	2036-2043	GRE	Galileo
UPA	Bernese 5.2	1975-2043	GRE	Galileo
WUT	Bernese 5.2	2000-2043	GRE	Galileo

¹ GNSS: G – GPS, R – GLONASS, E – Galileo, C – Beidou


Impact of Galileo on station positions (test phase)

- Mean station position differences between combined solutions based on the 9 ACs test solutions (GPS+GLONASS+Galileo) and the operational solutions (GPS+GLONASS)
- Stations grouped according to the antenna calibration type
- 44 weeks (2000–2043) of daily solutions used for comparison
- Largest position differences were obtained for stations with type-mean calibrated antennas (especially for the up component)

RMS of AC residuals wrt. combination

■ RMS of position differences between all individual AC solutions and the combined solution for north, east and vertical components.

Other relevant information for FPN ACs.

- According to the new EPN station guidelines, since January 1, 2020 submission of RINEX 2 will be optional for stations submitting RINEX 3 data.
 - ACs that use only RINEX 2 for processing should switch to RINEX 3 as soon as possible.
- Since mid September, CODE IGS analysis centre has extended the rapid and ultra-rapid products from a two-system to a three-system processing: GPS. GLONASS, Galileo (see LAC-MAIL no. 2492 for details)
 - Galileo observations may be also included in EPN rapid (and ultra-rapid) products.

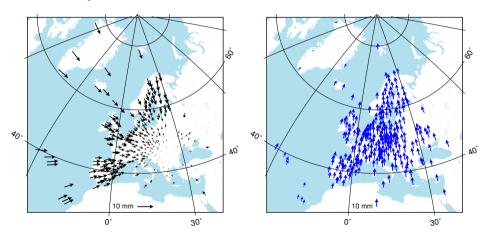
Comparison of EPN solutions with global solution

Following the GB action item, ACC started activities on the global extension of EPN.

Preliminary tests have been performed to analyse the impact of adding global stations on EPN daily coordinate solutions.

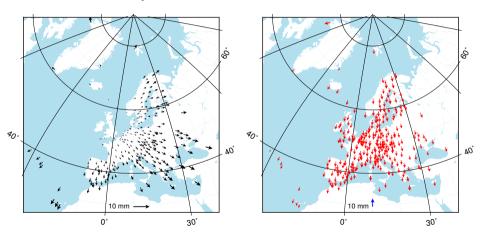
Comparison of EPN solutions with global solution

The following global solutions have been used for the creation of EPN global solution:

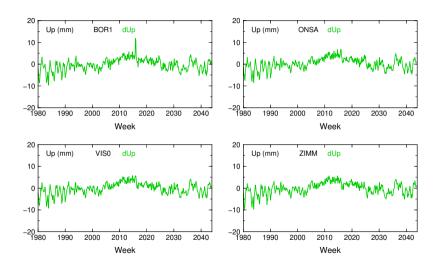

- 1-day CODE global solution (1980–2043, 2050–2055),
- operational IGN EPN AC solution (1980–2043, 2050–2055),
- 3 global solutions provided by IGE EPN AC (1990–1997).
- 4 global solutions provided by UPA EPN AC (2050–2055).
- lackground by July Bound of the solutions computed by WUT EPN AC (1980–2043, 2050–2055).

The global solutions were combined together with the EPN AC operational solutions for 72 weeks (1980–2043, 2050–2055).

the differences between EPN operational (regional) and EPN global solutions were inspected

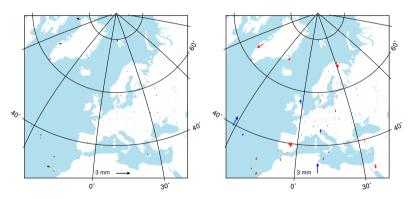

Direct comparison of EPN operational and EPN global solutions

Differences of positions between EPN operational solutions and EPN global solutions for week 1983, day 6

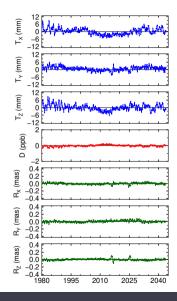


Direct comparison of EPN operational and EPN global solutions

Differences of positions between EPN combined operational solutions and EPN global solutions for week 2014, day 5

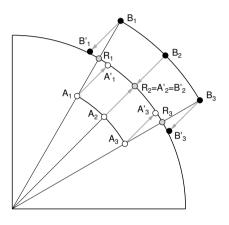


Examples of difference time series: up component


EPN vs. EPN global: 7-parameter transformation

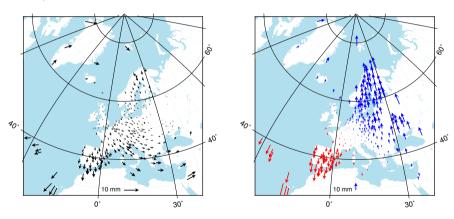
Differences of positions between EPN combined operational solutions and EPN global solutions after 7-parameter transformation (3 translations, 3 rotations and scale) for week 1983, day 6

RMS North: 0.09 mm. RMS East: 0.09 mm. RMS Up: 0.38 mm

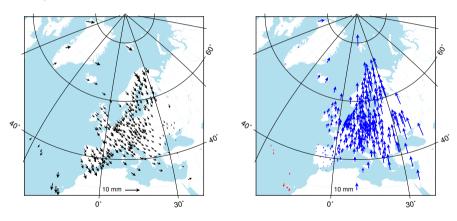

EPN vs. EPN global: transformation parameters, RMS of pos. residuals

 Mean RMSs (over 64 weeks) of station position residuals between EPN operational and EPN global after 3-, 6-, and 7-parameter transformation:

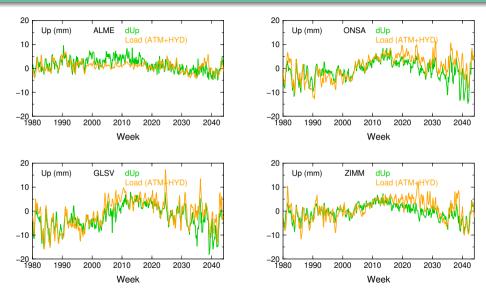
Transformation parameters	North (mm)	East (mm)	Up (mm)
3T 3T, 3R	0.14 0.14	0.14 0.13	0.51 0.47
3T, 3R, S	0.11	0.11	0.47


Loading effects

- R_1 , R_2 , R_3 mean positions (reference, e.g., ITRF)
- A₁, A₂, A₃ positions of sites during maximum load
- B_1 , B_2 , B_3 positions of sites during minimum load
- A'₁, A'₂, A'₃, B'₁, B'₂, B'₃ − positions of points after transformation to reference positions using translations only

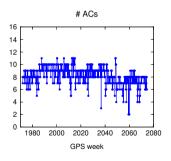

Transformed EPN solutions vs. EPN global

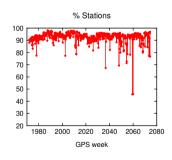
Differences of positions between transformed EPN solution (to IGS14 using 7-parameters) and EPN global solution for week 1990, day 3

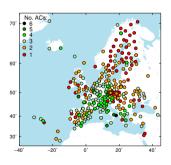


Transformed EPN solutions vs. EPN global

Differences of positions between transformed EPN solution (to IGS14 using 7-parameters) and EPN global solution for week 1983, day 6

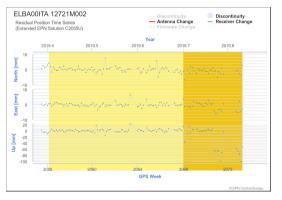



Comparison of difference time series to loading



Rapid product

- up to 11 ACs contribute
- \sim 90% stations included in rapid combined solutions
- \sim 20% stations processed by 1 AC and \sim 35% by 2 ACs only



Rapid product

The product is useful for coordinate monitoring and for outlier identification:

- relevant for ACs, ACC, station managers
- more ACs are asked to start submitting rapid solutions to increase the redundancy and number of stations in combined solutions.

www.epncb.eu/_productsservices/timeseries/

Summary

- Galileo observations have been officially included in EPN final daily coordinate solutions since GPS week 2044 (March 10, 2019)
 - since mid September, because of new three sytem CODE products, Galileo observations may be used also in EPN rapid and ultra-rapid processings
- Analysis centres are asked to:
 - use the new EPN ANTEX file (with multiple antenna calibrations). (For how long the old files should be maintained?)
 - switch to RINEX3 processing (if not already done); since new year, RINEX 2 data may not be available for some stations
- The activities on the analysis of the impact global sites on EPN daily coordinate solutions have been started
 - How do we proceed?
 - Are more ACs interested to join these activities?