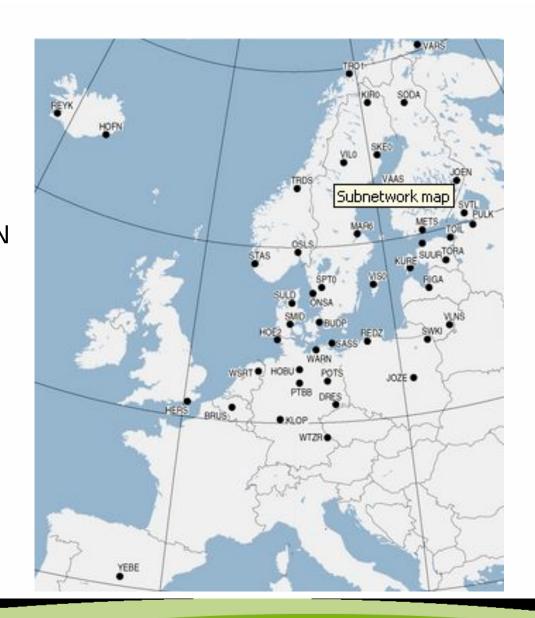


NKG LAC Status report

Lotti Jivall Jan Johansson

Lotti Jivall, 2008-10-22, FRanskfurt

Outline


- Daily/weekly solutions based on final IGS-products
- •NRT-analysis based on hourly data
- •Other activities related to EPN and EUREF

Network

KELY THU3 QAQ1 NYA1

- 49 stations
- Added since last EPN LAC-WS: SUUR 1395 KURE 1477 TOIL 1477 TORA 1477 PULK 1480 REDZ 1483 SWKI 1483
- Proposed: SCOR

Daily/weekly solutions

- •Collect data
- •Update antenna files and station file
- Processing
- Weekly combination
- Submit data

Data collection

- 1. RINEX-data from BKG (OLG, IGN and CDDISA)
- 2. Orbits and clocks from IGS
- 3. Code biases and ionosphere models from CODE
- 4. SATELLIT.105 and 105.ATX from AIUB
- 5. Antenna file automatic updated using PHCCNV

Processing

- Processing using modification of RNX2SNX.PCF. Since GPS-week 1400:
- Absolute antenna models
- final solution: 3 ° cutoff
- gradients
- FES2004.BLQ
- Additional solutions: 10 °, 25° and comparisons

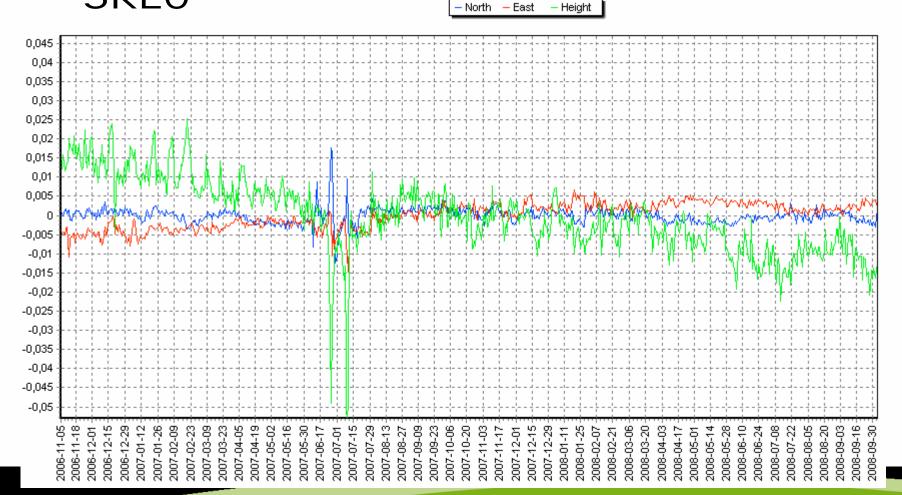
Weekly combined solution

- minimum constrained no translation to IGS05 (BRUS, HOFN, JOZE, KELY, METS, NYA1, ONSA, POTS, QAQ1, REYK, THU3, TRO1, WSRT, WTZR).
- Re-substitution of weekly coordinates for computation of troposphere parameters
- Submit weekly and daily files SINEX and TRO-files

Problems

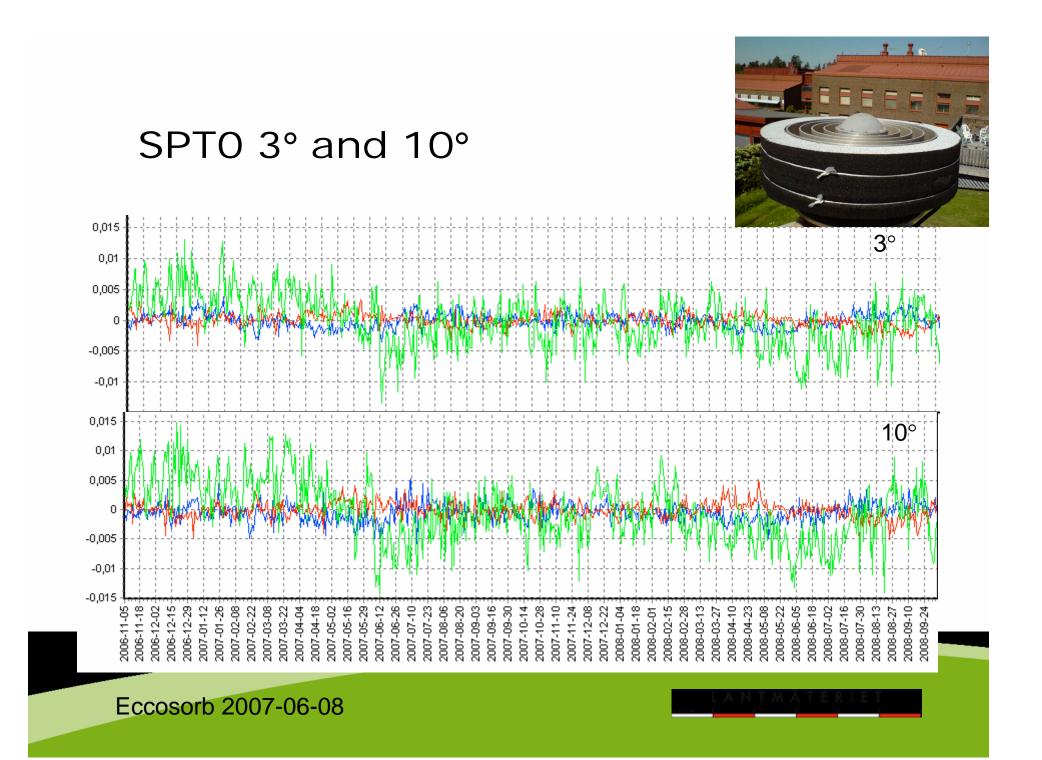
- No serious problems
- Less manual interaction since the RINEX-check was introduced (RNXGRA)
- Need to automatize data check with "Station Inconsistencies" and retrieval from other data centers, also check on small files
- Problems related to some stations: SUUR, SKE0, SODA, SPT0, (PULK) –see time series
- Elevation cut-off test: JOZE, KLOP, WSRT

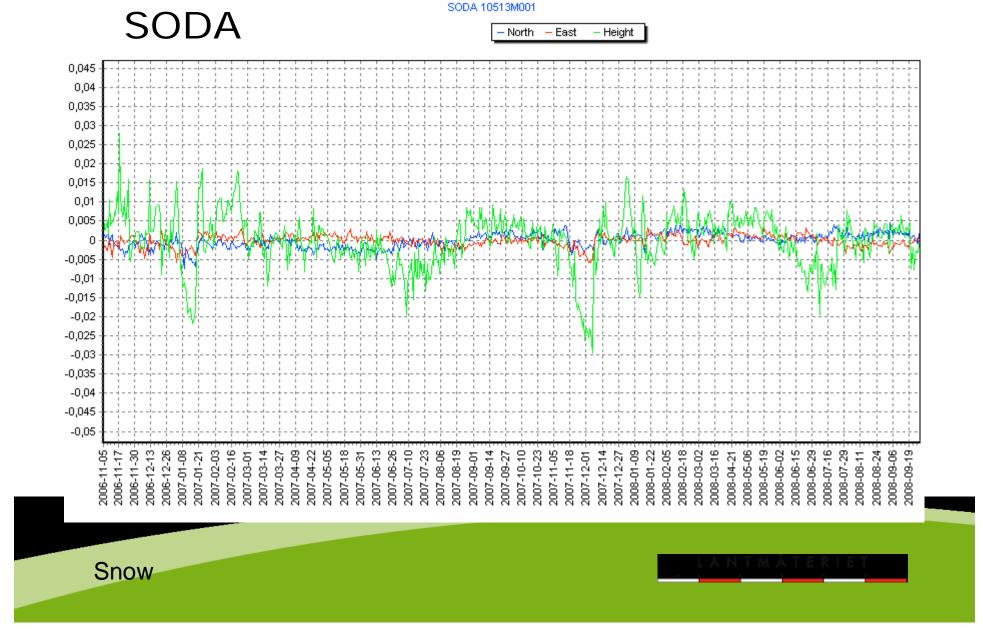
SUUR

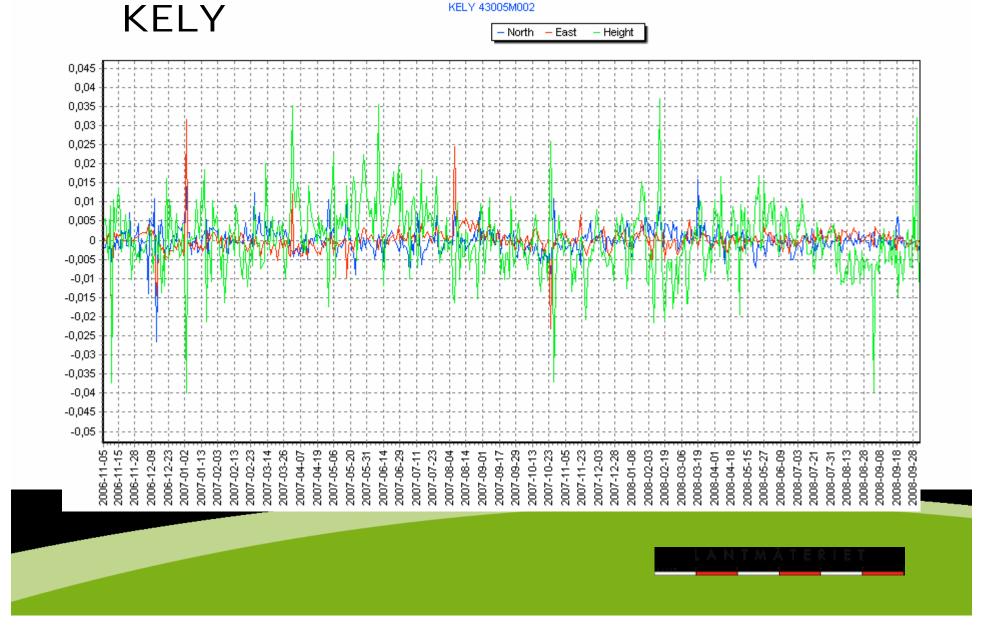

SUUR 10601M001

– North – East – Height

vandalized 2007-06-07

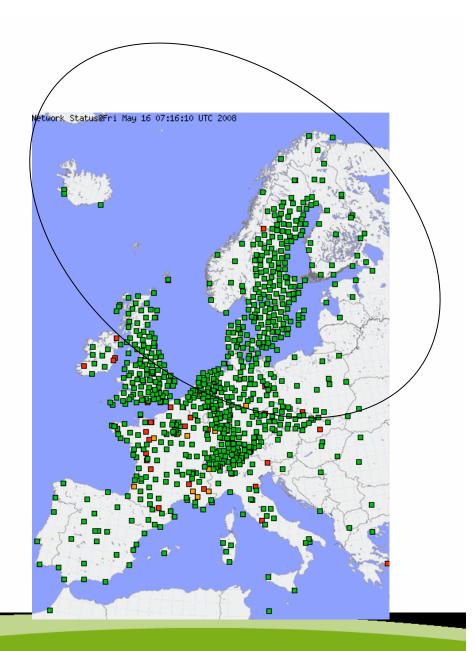





SKEO

SKE0 10426M001

104208001



NRT-solution

- NGAA E-GVAP /Jan Johansson
- GNSS data processing hosted at the SMHI operational center since 2007
- Data from Denmark (30), Finland (23), Iceland (2), Norway (15), Sweden (155) and surrounding countries (35), totally 260 stations.
- The map (→) is missing Thule & Scoresbysund (Greenland) Ny Aalesund (Svalbard), and 3 stations in the Moscow region.
- Data from the previous hour is processed and results (integrated tropospheric content) for all stations delivered to EGVAP no later than 40 minutes after full hour.

LANTMÄTERIET

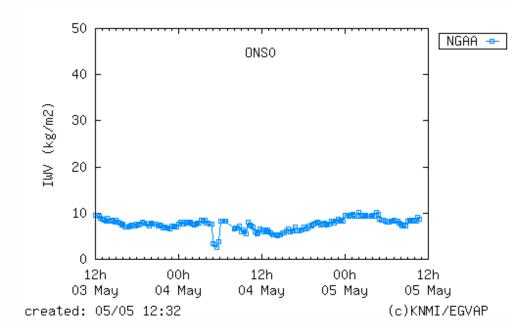
NKG NRT for EPN

- Special setup at Onsala with the NKG EPN sub-network, 49 stations
- Same analysis strategy, GIPSY PPP – next slide
- Start to submit? Today?
- SINEX-format

NKG EPN NRT

GIPSY, 10 h sliding interval

- Regional network . Data collection RINEX from BKG/ IGN/ CDDISA and IGU-orbits and clocks from IGS/GFZ. Estimating satellite clocks and orbit improvement.
- 2. NKG LAC subnetwork. PPP, coordinates and troposphere, 10 stations/minute





NRT problems

- RINEX-data not available on time (for the clock and orbit analysis)
- Has improved lately (better software for data collection and more stable data centers)

Other activities

- NKG2008 campaign, GPS-week 1499, stations in Nordic and Baltic countries as well as Greenland, Iceland, Svalbard and Faroe Islands, permanent and non-permanent stations
- NKG-transformation from ITRF to national ETRS 89
- Studies of antenna and site effects including the effect of the OSOD radome

Antenna and Site effects, OSOD - motivation

- No absolute calibration values for antenna+OSOD
- Reducing multipath and site effects by using microwave absorbing material like Eccosorb
- Attaching Eccosorb to a SWEPOS-pillar changes the estimated vertical component up to 10 mm dependent on elevation cut-off.
- What happens when new GNSS, new signals, and new ground and satellite antennas are introduced?

OSOD radome

Thin hemispherical radome + a "skirt" that protects the pillar top

The radome is not attached to the pillar and not to the antenna -> makes absolute calibration of antenna + radome on robot impossible

With a conventional radom attached to the antenna, snow would probably pile up around the antenna on the wide pillars

LMV antenna calibration field

Test at LMV test field

Radome holder

Upper position

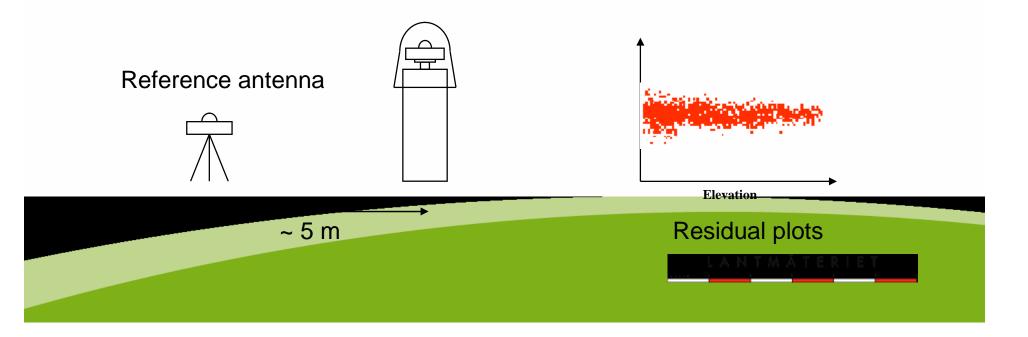
Lower position —

Radome

3x24 h for each setup

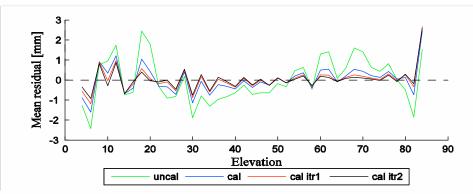
OSOD-radome – results LMV 2007

L3 trop, unit: mm	dN	dE	dU	σdN	σdE	σdU
w and w/o OSOD (OSOD minus no radome)						
Holder lower position	0.1	-0.4	0.9	0.3	0.2	0.4
Holder upper position	-0.5	0.8	1.6	0.2	0.3	1.0
No OSOD, different level of holder						
Upper minus lower	0.6	-0.1	2.5	0.2	0.3	0.3
Upper minus none	0.4	-0.2	2.8	0.2	0.3	0.3
Lower minus none	-0.2	-0.1	0.3	0.2	0.2	0.4


More tests will follow...

Station calibration

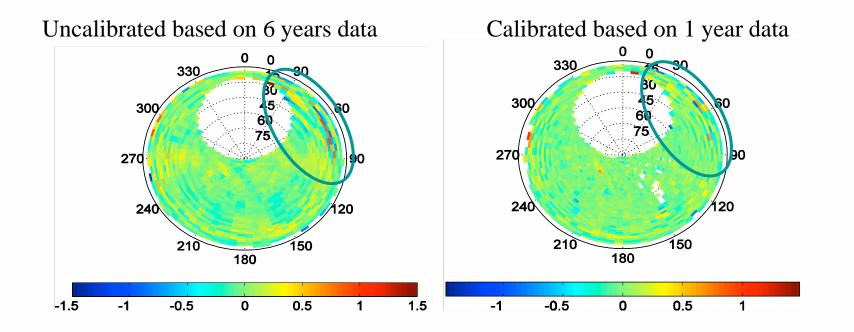
Two methods of calibration where developed and evaluated for the SWEPOS sites


1. In-situ

2. Statistical

Statistical Station Calibration

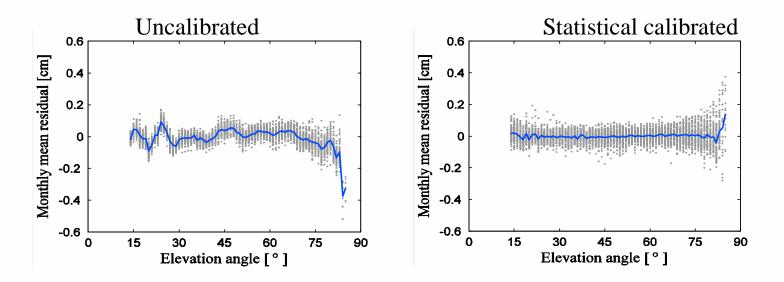
- Based on 6 years of post fit phase residuals from reprocessed data (1999-2004).
- Precise Point Positioning (PPP) processing strategy using GIPSY-OASIS software.
- Elevation cut-off angle set to 0 degrees
- Calibration matrix resolution 2x5 degrees in elevation and azimuth angles
- Residual outliers removed, empty grid boxes filled with nearest neighbouring averaging technique.
- Iterative approach used to absorb all systematic error sources in the calibration matrix
- Number of iteration steps is 2

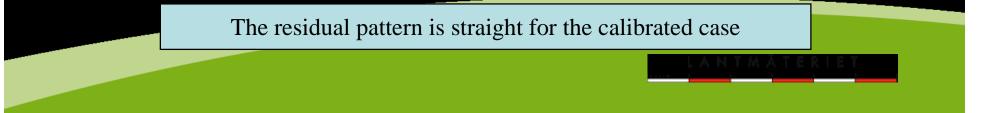

Example of residual pattern improvement due to iteration for the station Mårtsbo

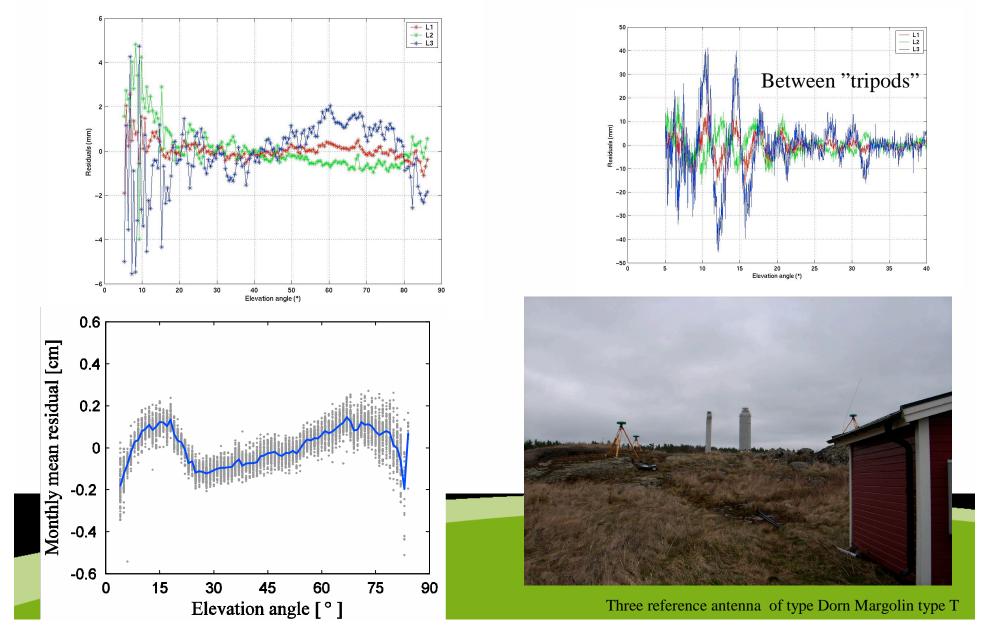
The PPP post-fit phase residuals includes not only site dependent effects but all non modelled error sources

LANTMÄTERIET

Statistical Station Calibration Results

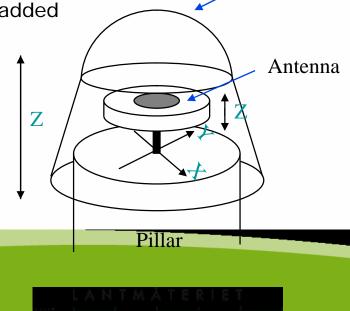

Averaged PPP residuals for the Onsala station with and without calibration implemented




Statistical Station Calibration Results

Averaged PPP residuals over 6 years of data for the Onsala station with and without calibration implemented Elevation cut-off angle is 15 degrees

In-Situ Station Calibration in Norrköping


The New Calibration Station at Onsala

- Construction during fall 2005 at Onsala
- Antenna movable in X, Y and Z inside radome
- Radome movable in Z direction
- Eccosorb may be added

Investigation of effects from misalignment of antenna, radome and pillar

Results show clear "SWEPOS-like" residual pattern

Radome

Weeks (see Fig 3)	– MR*	Difference(mm) * MR - ONTE* SWEPOS				205 -	ONTE	The geometry of the installation of the antenna and the radome on the				
rig 5,	RMS	Bias	Std	RMS	Bias	Std	RMS	Bias	Std	experimental station(ONTE)		
1 st	6.8	-0.1	6.8	8.7		7.2	5.5	-4.8	2.7	Both the antenna and the radome are at the Optimal position.		
2 nd	8.1	4.9	6.5	10.5		6.0	5.1	-3.8	3.4	The radome is at the optimal position and the antenna Horizontally move south.		
3 rd	8.2	4.2	7.0	10.5		7.0	4.5	-3.6	2.6	The radome is at the optimal position and the antenna Horizontally move west.		
4 th	8.5	3.0	7.9	10.2		7.6	4.0	-2.7	2.6	Both the antenna and the radome is at the optimal position with ECCOSORB on the top of the pillar.		
5 th	6.2	0.8	6.2	6.6		6.6	2.6	0.9	2.5	Both the antenna and the radome is at the Optimal position with ECCOSORB on the top of the pillar and around the antenna.		
										The antenna is at the		
6 th	8.3	3.8	7.4	12.8		7.4	6.9	-6.6	2.2	optimal position and the radome moves up 9.5cm to the antenna.		
7 th	4.2	5.2	5.4	10.4		5.5	4.2	-3.6	2.6	The antenna is at the optimal position and the radome moves up 5cm to the antenna.		
8 th	9.5	0.5	9.5	9.0		8.9	2.8	-0.8	2.7	Both the antenna and the radome is at the optimal position with ECCOSORB on the top of the pillar.		

SWEPOSstands for the permanent geodetic stationONTEstands for the experimental stationMRstands for the Microwave Radiometer

Summary – site effects and OSOD

- Mitigation of site dependent effects is important in order to achieve higher accuracy in positioning (and estimation of troposphere parameters)
- Statistical and in-situ station calibrations
- Tests with Eccosorb for multipath rejection
- Tests with OSOD show negligible effect more tests ongoing
- Stations with similar design and equipment suffers from similar elevation dependent effects

Summary

- 49 stations in northern Europe
- Standard processing, daily and weekly solutions with final IGS-products, Bernese software
- NRT (hourly data), GIPSY, delivery to EPN very soon
- Weakest part data collection
- Test with OSOD negligible effect more tests
- A lot of efforts on station calibration statistical and insitu

-> try to use site-specific calibration corrections in reprocessing (BIFROS/GIPSY, what about the Bernese?)

-> estimate errors (in coordinates) due to site effects

Thankyou for your attention!

